
Dynamic Right-Sizing in FTP (drsFTP):
Enhancing Grid Performance in User-Space

�

Mark K. Gardner
�
, Wu-chun Feng

�
, and Mike Fisk

�
�
mkg,feng,mfisk � @lanl.gov�

Research & Development in Advanced Network Technology (RADIANT)
Computer & Computational Sciences Division

Los Alamos National Laboratory
Los Alamos, NM 87545�

Network Security Team, Network Engineering Group
Computing, Communications & Networking Division

Los Alamos National Laboratory
Los Alamos, NM 87545

Abstract

With the advent of computational grids, networking per-
formance over the wide-area network (WAN) has become
a critical component in the grid infrastructure. Unfortu-
nately, many high-performance grid applications only use
a small fraction of the available bandwidth because oper-
ating systems and their associated protocol stacks are still
tuned for yesterday’s WAN speeds. As a result, network gu-
rus undertake the tedious process of manually tuning system
buffers to allow TCP flow control to scale to today’s WAN
grid environments. Although recent research has shown
how to set the size of these system buffers automatically at
connection set-up, the buffer sizes are only appropriate at
the beginning of the connection’s lifetime. To address these
problems, we describe an automated and scalable technique
called dynamic right-sizing. We implement this technique in
user space (in particular for bulk-data transfer) so that end
users do not have to modify the kernel to achieve a signifi-
cant increase in throughput.

1 Introduction

TCP is the ubiquitous transport protocol for the In-
ternet, as well as emerging infrastructures such as com-
putational grids [11, 12], data grids [2, 6], and access

�
This work was supported by the U.S. Department of Energy through

Los Alamos National Laboratory contract W-7405-ENG-36 with funding
provided by the Office of Science Base Program of DOE.

grids [7]. However, parallel and distributed applications
running stock TCP implementations perform abysmally
over networks with large bandwidth-delay products. Such
large bandwidth-delay product (BDP) networks are typical
in grid-computing networks.

The primary reason for the abysmal performance in large
BDP networks is that the default flow-control parameters in
TCP are static and are tuned to yesterday’s WAN speeds.
For any given connection, the optimal TCP buffer size is
equal to the product of the bandwidth of the bottleneck link
and the round-trip time (RTT), i.e., the bandwidth-delay
product of the connection. Grid and network researchers
manually tune buffer sizes to keep the network pipe full
in order to achieve acceptable WAN performance [4, 24].
To tune the buffer sizes appropriately, the grid community
currently uses diagnostic tools to determine the RTT of the
connection and the bandwidth of the bottleneck link. Such
tools include iperf [26], nettimer [15–17], netspec [27],
nettest [14], pchar [19], and pipechar [13]. However, all
of the tools require a certain level of network expertise to
install and use. Thus, users and developers who are not net-
work experts, e.g., the high-performance visualization com-
munity, find the tuning process quite difficult.

To simplify the tuning process and eliminate what has
been called the wizard gap [20],1 several services that pro-
vide clients with the correct tuning parameters for a given
connection have been proposed, e.g., AutoNcFTP [18] and

1The wizard gap is the difference between the network performance
that a network “wizard” can achieve by appropriate tuning and the perfor-
mance with default parameters.

Enable [25]. Although these services provide good first ap-
proximations and can improve overall throughput by two to
five times over a stock TCP implementation, they only mea-
sure the bandwidth and delay at connection set-up time, thus
making the implicit assumption that the bandwidth and RTT
of a given connection will not change significantly over the
lifetime of the connection. In Section 2, we demonstrate
that this assumption is tenuous at best.

A more dynamic approach to optimizing communication
in a grid involves automatically tuning buffers over the life-
time of the connection, not just at connection set-up. At
present, there exist two kernel-level implementations: auto-
tuning [23] and dynamic right-sizing (DRS) [8, 10].2 The
former implements sender-based, flow-control adaptation
while the latter implements received-based, flow-control
adaptation and abides by TCP semantics. Dynamic right-
sizing (DRS) in the kernel exhibits throughput speed-ups of
seven to eight over a typical WAN grid [8, 10]. However,
achieving such speed-ups requires that our kernel patch for
DRS be installed in the operating systems of every pair of
communicating hosts in a grid.3

The installation of our DRS kernel patch requires knowl-
edge about recompiling the kernel and root privilege to in-
stall the patch. Thus, the DRS functionality is generally
not accessible to the typical end user (or developer). How-
ever, in the longer term, we anticipate that this patch will
be incorporated into the kernel core so that its installation
and operation are transparent to the end user. In the mean-
time, end users still demand the better performance of DRS.
Thus, we propose a coarser-grained but more portable im-
plementation of DRS in user space that is transparent to
the end user. Specifically, we integrate DRS technique
into FTP (drsFTP). The differences between drsFTP and
AutoNcFTP, another user-space auto-tuning implementa-
tion, are two-fold. First, AutoNcFTP is based upon NcFTP
(http://www.ncftp.com/), which is a commercial product,
whereas drsFTP uses relies completely on open-source soft-
ware, i.e., Debian Linux’s FTP client and Washington Uni-
versity’s de-facto standard FTP daemon (http://www.wu-
ftpd.org/). Second, the buffers in AutoNcFTP are only
tuned at connection set-up while drsFTP buffers are dynam-
ically tuned over the lifetime of the connection, thus result-
ing in better adaptation and better overall performance.

2 Background

TCP relies on two mechanisms to set its transmission
rate: flow control and congestion control. Flow control en-
sures that the sender does not overrun the receiver’s avail-

2The Web100 project at http://www.web100.org recently incorporated
DRS into their software distribution.

3Once installed, not only do grids benefit, but every TCP-based appli-
cation benefits, e.g., FTP, multimedia streaming, WWW.

able buffer space (i.e., a sender can send no more data
than the size of the receiver’s last advertised flow-control
window) while congestion control ensures that the sender
does not overrun the network’s available bandwidth. TCP
implements these mechanisms via a flow-control window
(�������) that is advertised by the receiver to the sender and
a congestion-control window (�������) that is adapted based
on the inferred state of the network.

Specifically, TCP calculates an effective window (
�����)
as 	����������������������������������� and then sends data at a
rate of 	�������� �"!�! , where RTT is the round-trip time of
the connection. Currently, ������� varies dynamically as the
network state changes; however, ������� has always been
static despite the fact that today’s receivers are not nearly
as buffer-constrained as they were twenty years ago. Ide-
ally, ������� should vary with the bandwidth-delay product
(BDP) of the connection, thus providing the motivation for
dynamic-right sizing (DRS).

Historically, a static ������� sufficed for all communica-
tion because the BDP of networks was small. Thus, setting
������� to small values produced acceptable performance
while wasting little memory. Today, most operating sys-
tems set �������$#&%(' KB — the largest window available
without scaling [3]. Yet BDPs range between a few bytes
(56 Kbps) 5 ms * 36 bytes) and a few megabtyes (622
Mbps) 100 ms * 7.8 MB). For the former case, the sys-
tem wastes over 99% of its allocated memory (i.e., 36 B /
64 KB = 0.05%). In the latter case, the system potentially
wastes up to 99% of the network bandwidth (i.e., 64 KB /
7.8 MB = 0.8%).

Over the lifetime of a connection, bandwidth and delay
change (due to transitory queueing, congestion and route
changes) implying that the BDP also changes. Figure 1
supports this claim. Here we show the BDP between Los
Alamos and New York at 20-second intervals.4 The bottle-
neck bandwidth averages 17.2 Mbps with a low and a high
of 26 Kbps and 28.5 Mbps, respectively. The RTT delay
also varies between [119, 475] ms with an average delay of
157 ms. As a result, the BDP for our connection varies by
as much as 61 Mb.

Because the BDP over the lifetime of a connection is
continually changing, a fixed value for ������� is not ideal.
Selecting a fixed value forces an implicit decision between
(1) under-allocating memory and under-utilizing the net-
work or (2) over-allocating memory and wasting system
resources. The implicit decision remains even when the
BDP is determined at the start of a connection since the
BDP varies widely, even over short time scales, in wide-
area networks. Clearly, the grid community needs a solution
that dynamically and transparently adapts ������� to achieve

4We use nettimer to measure bandwidth and RTT delay, but note that
the actual BDP may be even larger as nettimer measures dynamic latency
but static bottleneck bandwidth.

0

10

20

30

40

50

60

70

8:00am 9:00am 10:00am 11:00am Noon 1:00pm

B
an

dw
id

th
 *

 D
el

ay
 (

M
bi

ts
 =

 1
00

00
00

 b
its

)

Time of Day

Figure 1. Bandwidth-delay product at 20-
second intervals

good performance without wasting network or memory re-
sources. DRS is one such solution.

3 DRS in User Space: drsFTP

The key to maximizing the transfer rate of TCP connec-
tions over high bandwidth-delay product networks is to en-
sure that the transfer rate is limited only by the congestion-
control window throughout the lifetime of the connection.
DRS in kernel space does this by inferring the “instanta-
neous” bandwidth-delay product of a connection and setting
the flow-control window above that value [8–10]. Unlike
the kernel-space version of DRS which benefits all applica-
tions transparently, user-space DRS must be implemented
by each pair of communicating applications. In this section,
we implement DRS in a FTP client and server, resulting in
drsFTP.

The primary difficulty in developing user-space DRS ap-
plications lies in the fact that user-space code does not have
direct access to the state of the TCP stack. Consequently,
drsFTP must estimate the bandwidth-delay product of the
connection from coarse-grained user-space measurements
rather than from fine-grained TCP connection state.

3.1 Determining Available Bandwidth

By definition, we know that the sender always has data to
send throughout the life of the FTP data connection. It then
follows that the sender will send as much data as possible,
limited by its idea of the congestion- and flow-control win-
dows. Furthermore, the receiver is receiving data as quickly
as the current windows, network and CPU scheduling con-
ditions allow. Therefore, the average bandwidth available to
a connection is computed by dividing the number of bytes
received by the time required to receive them.

The difficulty lies in selecting the appropriate sampling
interval over which to aggregate the number of bytes re-
ceived.5 Selecting too short of an interval dramatically in-
creases overhead and reduces performance. Too short of
an interval also leads to erroneous estimates because of
scheduling and buffering effects. On the other hand, se-
lecting too long of an interval decreases the responsiveness
of DRS to changes in available bandwidth and may reduce
performance because the estimated bandwidth-delay prod-
uct, and hence, the receiver’s advertised window, may be
artificially small.

In the current implementation of drsFTP, the available
bandwidth is computed through the periodic invocation of a
signal handler upon alarm expiration. Different values for
the sampling interval can easily be tested by varying the pe-
riodic expiration time of the alarm. The average bandwidth
available to the connection over the last interval is the num-
ber of bytes received since the last alarm signal divided by
the length of the interval. An appropriate choice for the
sample interval yields estimated bandwidth values of suffi-
cient accuracy.

3.2 Determining RTT

Unlike the procedure for estimating the bandwidth of a
connection, the RTT cannot be inferred in user-space ap-
plications without injecting extra traffic into the network.
User-space code does not have access to the inner work-
ings of the TCP stack and hence cannot know when a given
packet is sent nor when its acknowledgement is received.

To sidestep this problem, we send a small packet on the
FTP control channel for the sender to echo back. The esti-
mated RTT begins with the sending of a RTT probe packet
and ends when its echo is received. The additional load on
the network as the result of RTT probe packets is generally
small and depends on the sampling interval. (We give an
optimization which minimizes the impact of RTT probes in
Section 3.5.)

We note that sending the RTT probe packet over the con-
trol channel assumes that the control and data channels fol-
low the same route. In the case of third party control of a
FTP data transfer, however, the control and data channels
are likely to take very different routes. Thus the RTT esti-
mate may be inaccurate. We send RTT probes over the con-
trol channel to comply with RFC 959 [21], since commands
cannot be sent on the data channel. If RTT probes could be
sent out-of-band on the data channel, then RTT estimates
could be obtained in the manner described above. Sending
data out-of-band is possible within Globus and hence we are
working with the GridFTP researchers to integrate drsFTP
with GridFTP.

5Equivalently, we can select a fixed number of bytes to be received
periodically and measure how long it takes.

3.3 Setting Receiver’s Advertised Window

User-space applications cannot directly set the flow-
control window in most TCP stacks. Instead, they must
indirectly set the window by setting the TCP receive buffer
size to an appropriate value via a setsockopt call.

In the worst case, the sender’s window is doubling with
every round trip during TCP slow start. When it is deter-
mined that the receiver window should increase, the new
value should be at least double the current value. (There is
no need to double the current value once TCP is out of slow
start. However, it is very difficult to determine when slow
start ends.) Therefore, we increase the receive buffer in our
drsFTP implementation by a factor of two over the value of
the estimated BDP whenever the current buffer size is less
than twice the BDP.

3.4 TCP Window Scaling

Because the window scale factor in TCP is established
at connection set-up time, an appropriate scale must be set
before a new data connection is opened. Most operating
systems allow TCP RCVBUF and TCP SNDBUF to be set
on a socket before a connection attempt is made and then
use the requested buffer size to establish the TCP window
scaling. drsFTP sets the send and receive buffer sizes to
allow windows of up to 16-MB worth of data before initiat-
ing connection set-up. Once the connection has been made
(and the window scale factor set properly), drsFTP resets
the buffer sizes back to their initial values.

In order to set the window scale factor appropriately, the
network limits of the operating system must be increased.
The steps involved in increasing the limits are operating sys-
tem dependent. See [5] for an example of the steps required
for a variety of operating systems.

Unfortunately, even after adjusting the network limits in
the obvious ways, Linux 2.4 kernels still do not set the win-
dow scale factor as expected. For more information, see
Appendix A.

3.5 Adjusting the Sender’s Window

In order to take full advantage of dynamically changing
buffer sizes, the sender’s buffer should adjust in step with
the receiver’s. This presents a problem in user-space imple-
mentations because the sender’s user-space code has no way
of determining the receiver’s advertised window size. How-
ever, because the FTP protocol specification (RFC 959 [21])
does not prohibit traffic on the control channel during data
transfer,6 a drsFTP receiver may inform a drsFTP sender

6Although RFC 959 does not prohibit traffic on the control channel
during data transfer, many implementations do not expect it.

about changes in buffer size by communicating over the
control channel.

Since FTP is a bidirectional data-transfer protocol, the
receiver may be either the FTP server or client. However,
RFC 959 specifies that only FTP clients may send com-
mands on the control channel, while FTP servers may only
send replies to commands. Thus, a new FTP command and
reply must be added to the FTP implementation in order to
fully implement drsFTP in both directions.

Serendipitously, the Internet Draft of the GridFTP pro-
tocol extensions to FTP [1] defines an FTP command
“SBUF”, which is designed to allow a client to set the
server’s TCP buffer sizes before data transfer commences.
We extend the definition of SBUF to allow this command to
be specified during a data transfer, i.e., to allow buffer sizes
to be set dynamically. The definition of the expanded SBUF
command appears below.

Syntax:

sbuf = SBUF <SP> <buffer-size>
buffer-size ::= <number>

This command informs the server-PI to set the TCP
buffer size to the value specified (in bytes). SBUF
may be issued at any time, including before or dur-
ing an active data transfer. If specified during a data
transfer, it affects the data transfer that started most
recently. The command is informational and need not
be acted upon.

Response Codes:

200 SBUF <SP> <buffer-size>

If the server-PI is able to change its buffer size, a
200 response code is returned. The new size of the
server’s buffer is also returned in case it is less than
the requested size. This allows the client-PI to regu-
late its buffer usage to keep in step with the server.

In addition, we propose a new reply code to allow the
server-as-receiver to notify the client of changes in the re-
ceiver window.

New Reply Code:

126 SBUF <SP> <buffer-size>

The 126 Reply may occur at any point when the
server-PI is receiving data from the user-PI. As with
the SBUF, this reply is informational and need not be
acted upon or responded to in any manner, thus pro-
viding interoperability with non-drsFTP applications.

eth0

FTP Server WAN Emulator
eth0 eth1 eth0

FTP Client

Figure 2. Experimental setup

This reply code is consistent with RFC 959 and does not
interfere with any FTP extension or proposed extension.

We note that the SBUF command also provides a vehicle
for determining RTT without injecting a separate message
into the network. Since RTT probes do not contain any data,
we allow SBUF commands to serve the dual purpose of con-
veying the receiver’s buffer size to the sender and probing
for the RTT. Thus, separate RTT probes, as discussed in
Section 3.2, are not needed.

4 Experiments

To test the performance of drsFTP against stock FTP and
FTP in which buffer sizes are statically set at the start of the
connection, we first need a realistic and reproducible sam-
ple of wide-area network (WAN) behavior. To obtain this
data, we run ping and nettimer every twenty seconds
to sample the bandwidth and RTT between Los Alamos Na-
tional Laboratory and a site in New York (a cross-country
data transfer). We then use a representative sample of this
data to configure our WAN emulator and benchmark each
of the aforementioned versions of FTP.

4.1 Experimental Setup

Our experimental apparatus, shown in Figure 2, consists
of three identical machines connected via Gigabit Ethernet.
Each machine contains dual 933-MHz Pentium III proces-
sors with 512-MB of RAM and an Alteon Gigabit NIC in a
64-bit, 66-MHz PCI slot. One machine, containing another
Alteon Gigabit NIC, acts as a WAN emulator. Each of its
two NICs are connected to one of the other machines and
the routes set via hard-coded arp entries on the client and
server. The WAN emulator, which is implemented using
TICKET technology [29], forwards packets at line rate and
has a user-settable delay. All traffic, both data and control,
occurs through the WAN emulator.

In the results that follow, the average round-trip time is
102.1 ms. The sampling interval used by the drsFTP imple-
mentation to estimate available bandwidth is one second,
a conservative configuration with very low overhead. The
over-provisioned static buffer size is 16-MB, which is larger
than the optimal bandwidth-delay product of 12.2-MB, and

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100

C
D

F
(%

)

Bandwidth * Delay (Mb = 1000000 bits)

0.5 Mb, 27%

1.03 Mb, 50%

1.74 Mb, 66%

2.80 Mb, 74%

Figure 3. CDF of BDP from Figure 1

represents the best performance possible in this configura-
tion.

4.2 Experimental Method

For each version of FTP (stock FTP, drsFTP and
statically-tuned FTP), we transfer a set of files, ranging
from 8-KB to 64-MB, over the emulated WAN. As a base-
line, we use stock FTP with TCP receive buffers set at 64-
KB. (Most modern operating systems set their default TCP
buffers to 64 KB, 32 KB, or even less. Therefore, this num-
ber represents the high-end of OS-default TCP buffer sizes.)
We then test drsFTP, allowing the buffer size to vary in re-
sponse to network conditions while starting at 64 KB as in
stock FTP. Last of all, we benchmark a statically-tuned FTP
with the TCP buffers set to various values at connection set-
up time.

4.3 WAN Data

Figure 3 show the cumulative distribution function of
the BDP data of Figure 1 which was used to represent the
WAN for the experiments. The minimum, median, mean
and maximum values of BDP are 3.58-Kb, 1.17 Mb, 2.80-
Mb, and 61.4-Mb, respectively. Several representative val-
ues are called out on the graph. In particular, the 0.5-Mb
value corresponds to a buffer size of 64-KB, which is the
default (stock) buffer size tested below. Also, the 1.74-Mb
value corresponds with one of the statically-set buffer sizes
tested.

4.4 Results

Figure 4 shows the average FTP bandwidth as a func-
tion of the size of the transfer. (The x-axis has a linear

0

5

10

15

20

25

30

35

40

0 4 8 16 32 64

A
ve

ra
ge

 B
an

dw
id

th
 (

M
bp

s
=

 1
00

00
00

 b
ps

)

File Transfer Size (MB = 1048576 bytes)

Over-Provisioned FTP
Statically-Tuned FTP
drsFTP
FTP

Figure 4. Comparison of FTP, drsFTP and
statically-tuned FTP

scale with markers placed according to the powers-of-two
file sizes tested. Also the width of the 95% confidence in-
terval centered around the average is less than 5% in all
cases.) The average bandwidth of FTP with stock buffer
sizes approaches 5-Mbps for file sizes as small as 8-MB. In
contrast, the average bandwidth of drsFTP asymptotically
approaches 30-Mbps at over 64-MB file transfers. Thus,
the utilization of available bandwidth of drsFTP is approxi-
mately six times better than stock FTP.

The best bandwidth (34.5-Mbps) is achieved by the over-
provisioned FTP which has larger than required buffer sizes.
As shown, drsFTP achieves 78.7% of the over-provisioned
bandwidth. The primary reason for the difference in per-
formance is that drsFTP must rely on coarse-grained mea-
surements to infer available bandwidth and round-trip time
and hence may not infer the required buffer sizes accurately.
This is an inherent limitation indicative of the interim na-
ture of the drsFTP application. The kernel version of DRS
has access to fine-grained information and hence performs
better [8, 10]. In addition, all applications benefit without
modification when DRS is in the kernel. drsFTP was devel-
oped to provide the benefits of DRS to the grid community
while vendors implement DRS in the kernel.

Figure 4 also compares the average bandwidth of drsFTP
to a statically-tuned case where the BDP was sampled at an
inopportune time, e.g., at one of the lower data points in
Figure 1. As shown in Figure 3, the 212.5-KB (1.74-Mb)
buffer size chosen for this test is in the 66th percentile of
the BDP data of Figure 1. (The median value of BDP is
143.3-KB or 1.17 Mb.) Here we see that drsFTP utilizes
the available bandwidth 2.4 times better than the statically-
tuned case. The comparison illustrates the benefit of in-
ferring the available bandwidth and setting the flow-control
buffers automatically.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 1 2 3 4 5 6 7 8

R
ec

ei
ve

 B
uf

fe
r

Si
ze

 (
M

B
 =

 1
04

85
76

 b
yt

es
)

SBUF events

Run 1
Run 2
Run 3

Figure 5. drsFTP Buffer Sizes over Time

So far, we have only addressed the issue of achiev-
ing high transfer rates. We now compare buffer space
requirements for drsFTP, statically-tuned FTP and over-
provisioned FTP. As motivation, we conjecture that mem-
ory consumption will become a more serious issue as com-
putational grids and ubiquitous computing become heavily-
used and indispensable parts of the computational infras-
tructure. While applications are able to use buffer space
with abandon now, we envision the time when grid nodes
will become heavily loaded with large numbers of poten-
tially diverse applications. One example might be a reposi-
tory for human genome information which will be accessed
simultaneously by thousands of researchers. If each con-
nection over-provisions its buffers, it is likely that the node
will run out of buffer space and reject connections which
could otherwise be serviced had the connections been more
frugal.

Figure 5 shows the growth of the drsFTP receive buffer
as a function of time during three transfers of a 512-MB file.
The final buffer sizes for the three transfers range from 1.9-
MB to 3.1-MB, with an average of 2.7-MB. Due to chang-
ing conditions during the transfers, the buffer sizes grow
at different rates, particularly during the latter part of the
transfer. In contrast, the over-provisioned FTP uses a 16-
MB buffer which is statically allocated during connection
set-up. Thus drsFTP achieves over three quarters of the
over-provisioned performance while only using one sixth
the amount of memory. In other words, drsFTP achieves an
average of 10.1 Mbps per MB of buffer space used while
statically-tuned FTP achieves only 2.2 Mbps per MB of
buffer space used.

As Figure 6 shows, drsFTP achieves nearly six times bet-
ter utilization of the network with respect to memory than
the over-provisioned case. Had the theoretically optimal
BDP of 12.2-MB been allocated for the statically-tuned FTP

0.01

0.10

1.00

10.00

100.00

1 4 8 16 32 64

M
bp

s/
M

B
 (

10
00

00
0

bp
s/

10
48

57
6

by
te

s)

File Transfer Size (MB = 1048576 bytes)

drsFTP
Over-Provisioned FTP
Statically-Tuned FTP

Figure 6. Mbps per MB of Buffer Space

connection instead of 16-MB, drsFTP would still have been
able to support more high-performance connections with a
3.6 times Mbps-per-MB advantage. The difference between
drsFTP and the statically-tuned case where the BDP was
sampled at an inopportune time is even more dramatic.

5 Conclusion

In this paper, we present drsFTP, dynamic right-sizing
(DRS) in FTP, an automated technique for enhancing grid
performance. This work was inspired by feedback we re-
ceived at SC 2001 on our kernel implementation of DRS.
Specifically, application users wanted the functionality of
DRS without modifying their operating system kernels. We
have shown that DRS improves FTP throughput by six
times over a stock implementation. Furthermore, drsFTP
achieves significantly higher bandwidth per buffer space
used than the customary over-provisioning approach. Thus
applications modified to support DRS provide significant
performance improvements to the grid community while we
wait for DRS kernel implementations, with even better per-
formance, to become available.

Currently, our implementation of drsFTP is the only
DRS-modified application. We will be releasing drsFTP
under the GNU Public License after more extensive testing.
We are also working with Globus middleware researchers
to integrate drsFTP with GridFTP.

Currently, GridFTP uses parallel streams to achieve high
bandwidth. However, results from the SC2001 Bandwidth
Challenge [22] suggest that under some circumstances hav-
ing a single stream with appropriately sized buffers may
achieve better performance. We have done some prelimi-
nary work to investigate this phenomenon [28] but need to
thoroughly explore the trade-offs involved. Perhaps, paral-
lel DRS streams will combine the best of both approaches.

6 Acknowledgements

We gratefully acknowledge the assistance of Eric Wei-
gle, not only for the development of the TICKET WAN em-
ulator, but also for many insightful discussions concerning
the Linux kernel.

References

[1] W. Allcock et al. GridFTP: Protocol Extensions to FTP
for the Grid. http://www-fp.mcs.anl.gov/dsl/
GridFTP-Protocol-RFC-Draft.pdf, Mar 2001.

[2] ANL, CalTech, LBL, SLAC, JF, U. Wisconsin, BNL, FNL,
and SDSC. The Particle Physics Data Grid. http://www.
cacr.caltech.edu/ppdg/.

[3] D. Borman, R. Braden, and V. Jacobson. TCP Extensions
for High Performance (RFC 1323), May 1992.

[4] Pittsburgh Supercomputing Center. Enabling High-
Performance Data Transfers on Hosts. http://www.
psc.edu/networking-/perf_tune.html/.

[5] Pittsburgh Supercomputing Center. Enabling high perfor-
mance data transfers on hosts. http://www.psc.edu/
networking/perf_tune.html.

[6] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and
S. Tuecke. The Data Grid: Towards an Architecture for the
Distributed Management and Analysis of Large Scientific
Datasets. International Journal of Supercomputer Applica-
tions, 23(3):187–200, July 2001.

[7] L. Childers, T. Disz, R. Olson, M. E. Papka, R. Stevens, and
T. Udeshi. Access Grid: Immersive Group-to-Group Col-
laborative Visualization. In Proceedings of the 4th Interna-
tional Immersive Projection Workshop, 2000.

[8] M. Fisk and W. Feng. Dynamic Adjustment of TCP Window
Sizes. Technical Report Los Alamos Unclassified Report
(LAUR) 00-3221, Los Alamos National Laboratory, July
2000.

[9] M. Fisk and W. Feng. Dynamic Right-Sizing in TCP. In
Proceedings of the Los Alamos Computer Science Institute
Symposium, Oct 2001. LA-UR 01-5460.

[10] M. Fisk and W. Feng. Dynamic Right-Sizing: TCP Flow-
Control Adaptation (Poster). In Proceedings of SC 2001:
High-Performance Networking and Computing Conference,
November 2001.

[11] I. Foster and C. Kesselman, editors. The Grid: Blueprint for
a New Computing Infrastructure. Morgan Kaufmann Pub-
lishers, 1999.

[12] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of
the Grid: Enabling Scalable Virtual Organizations. Interna-
tional Journal of Supercomputer Applications, 2001.

[13] G. Jin, G. Yang, B. Crowley, and D. Agrawal. Network
Characterization Service. In Proceedings of the IEEE Sym-
posium on High-Performance Distributed Computing, Au-
gust 2001.

[14] Lawrence Berkley National Laboratory. Nettest: Se-
cure Network Testing and Monitoring. http://www-
itg.lbl.gov/nettest/.

[15] K. Lai and M. Baker. Measuring Bandwidth. In Proceedings
of IEEE INFOCOMM 1999, March 1999.

[16] K. Lai and M. Baker. Measuring Link Bandwidths Using
a Deterministic Model of Packet Delay. In Proceedings of
ACM SIGCOMM 2000, August 2000.

[17] K. Lai and M. Baker. Nettimer: A Tool for Measuring Bot-
tleneck Link Bandwidth. In Proceedings of the USENIX
Symposium on Internet Technologies and Systems, March
2001.

[18] J. Liu and J. Ferguson. Automatic TCP Socket
Buffer Tuning. In Proceedings of SC 2000: High-
Performance Networking and Computing Conference (Re-
search Gem), November 2000. http://dast.nlanr.
net/Projects/Autobuf.

[19] B. Mah. pchar: A Tool for Measuring Internet Path Char-
acteristics. http://www.employees.org/˜bmah/
Software/pchar.

[20] M. Mathis. Pushing Up Performance for Every-
one. http://www.ncne.nlanr.net/news/
workshop/19999/991205/Talks/mathis_
991205_Pushing_Up_Performance/.

[21] J. Postel and J. Reynolds. File Transfer Protocol (FTP), Oct
1985.

[22] SC2001 Bandwidth Challenge Proposal: Bandwidth to the
World. http://www-iepm.slac.stanford.edu/
monitoring/bulk/sc2001/proposal.html.

[23] J. Semke, J. Mahdavi, and M. Mathis. Automatic TCP
Buffer Tuning. Computer Communications Review, ACM
SIGCOMM, 28(4), October 2001.

[24] B. Tierney. TCP Tuning Guide for Distributed Applications
on Wide-Area Networks. In USENIX & SAGE Login, Febru-
ary 2001. http://www-didc.lbl.gov/tcp-wan.
html.

[25] B. Tierney, D. Gunter, J. Lee, and M. Stoufer. Enabling
Network-Aware Applications. In Proceedings of the IEEE
International Symposium on High-Performance Distributed
Computing, August 2001.

[26] A. Tirumala and J. Ferguson. IPERF. http://dast.
nlanr.net/Projects/Iperf/index.html.

[27] Information & Telecommunication Technology Center, Uni-
versity of Kansas. NetSpec: A Tool for Network Experimen-
tation and Measurement. http://www.ittc.ukans.
edu/netspec/.

[28] E. Weigle and W. Feng. A Comparison of TCP Automatic-
Tuning Techniques for Distributed Computing. In Proceed-
ings of the Eleventh IEEE International Symposium on High
Performance Distributed Computing (HPDC-11), Jul 2002.

[29] E. Weigle and W. Feng. TICKETing High-Speed Traffic
with Commodity Hardware and Software. In Proceedings
of the Third Annual Passive and Active Measurement Work-
shop (PAM2002), March 2002.

Appendix

A Setting the Window Scale under Linux 2.4

As was discussed in Section 3.4, drsFTP sets the send
and receive buffers sizes before establishing a connection
in order to set the window scale factor. The network limits
in the operating system must also be set appropriately for

window scaling to be useful. However, this approach does
not work as outlined.

Under Linux 2.4 kernels, writing values to files in
the/proc/sys/net file system changes the network lim-
its. Table 1 lists the pertinent variables, their initial values
(Table 1(a)) and the values used during the drsFTP experi-
ments in Section 4 (Table 1(b)) .

Variable Minimum Default Maximum
core/rmem max 131071
core/wmem max 131071
ipv4/tcp rmem 4096 87380 174760
ipv4/tcp wmem 4096 16384 131072

(a) Default Settings

Variable Minimum Default Maximum
core/rmem max 16777216
core/wmem max 16777216
ipv4/tcp rmem 4096 8488608 16777216
ipv4/tcp wmem 4096 16384 16777216

(b) Settings Used with drsFTP Experiments

Table 1. Increasing Linux Network Limits

Initially, only the maximum values were changed. How-
ever, the window scale factor did not increase as expected.
It appears that Linux 2.4 determines the receiver’s window
scale factor from the default value of ipv4/tcp rmem
rather than the maximum value. Increasing the default value
caused the window scale factor to be set correctly.

Requiring the default ipv4/tcp rmem value to be set
in order to set the window scale factor has the consequence
of either wasting buffer space, since most of the connec-
tions do not perform bulk-data transfers, or limiting the size
of the flow-control window for those that do. Using the
default value also places implicit limits on the maximum
buffer space that can be effectively utilized because too
small of default will constrain the window size to a value
less than that implied by the maximum. For these reasons,
an approach which gives more flexibility is to set the win-
dow scale factor based on the maximum ipv4/tcp rmem
value.

